Abstract

Following the model introduced by Aguech et al. (Probab Eng Inf Sci 21:133–141, 2007), the weighted depth of a node in a labelled rooted tree is the sum of all labels on the path connecting the node to the root. We analyse weighted depths of nodes with given labels, the last inserted node, nodes ordered as visited by the depth first search process, the weighted path length and the weighted Wiener index in a random binary search tree. We establish three regimes of nodes depending on whether the second-order behaviour of their weighted depths follows from fluctuations of the keys on the path, the depth of the nodes or both. Finally, we investigate a random distribution function on the unit interval arising as scaling limit for weighted depths of nodes with at most one child.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.