Abstract

Let ℨ be a complete set of Sylow subgroups of a finite group G, that is, for each prime p dividing the order of G, ℨ contains exactly one and only one Sylow p-subgroup of G. A subgroup H of G is said to be ℨ-permutable of G if H permutes with every member of ℨ. A subgroup H of G is said to be a weakly ℨ-permutable subgroup of G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K ≤ Hℨ, where Hℨ is the subgroup of H generated by all those subgroups of H which are ℨ-permutable subgroups of G. In this paper, we prove that if p is the smallest prime dividing the order of G and the maximal subgroups of Gp ∈ ℨ are weakly ℨ-permutable subgroups of G, then G is p-nilpotent. Moreover, we prove that if 𝔉 is a saturated formation containing the class of all supersolvable groups, then G ∈ 𝔉 iff there is a solvable normal subgroup H in G such that G/H ∈ 𝔉 and the maximal subgroups of the Sylow subgroups of the Fitting subgroup F(H) are weakly ℨ-permutable subgroups of G. These two results generalize and unify several results in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call