Abstract
We prove the existence of a weak solution to the equations describing the inertial motions of a coupled system constituted by a rigid body containing a viscous compressible fluid. We then provide a weak-strong uniqueness result that allows us to completely characterize, under certain physical assumptions, the asymptotic behavior in time of the weak solution corresponding to smooth data of restricted “size”, and show that it tends to a uniquely determined steady-state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.