Abstract
AbstractWe consider N-body problems with potential 1/r2κ, where κ∈(0,1), including the Newtonian case (κ=1/2). Given R>0 and T>0, we find a uniform upper bound for the minimal action of paths binding, in time T, any two configurations which are contained in some ball of radius R. Using cluster partitions, we obtain from these estimates the Hölder regularity of the critical action potential (i.e. of the minimal action of paths binding two configurations in free time). As an application, we establish the weak KAM theorem for these N-body problems, i.e. we prove the existence of fixed points of the Lax–Oleinik semigroup, and we show that they are global viscosity solutions of the corresponding Hamilton–Jacobi equation. We also prove that there are invariant solutions for the action of isometries on the configuration space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.