Abstract

In this paper, we generalize and extend the Baskakov-Kantorovich operators by constructing the (p, q)-Baskakov Kantorovich operators (ϒn,b,p,qh)(x)=[n]p,q∑b=0∞qb−1υb,np,q(x)∫Rh(y)Ψ([n]p,qqb−1pn−1y−[b]p,q)dp,qy.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\begin{aligned} (\\Upsilon _{n,b,p,q} h) (x) = [ n ]_{p,q} \\sum_{b=0}^{ \\infty}q^{b-1} \\upsilon _{b,n}^{p,q}(x) \\int _{\\mathbb{R}}h(y)\\Psi \\biggl( [ n ] _{p,q} \\frac{q^{b-1}}{p^{n-1}}y - [ b ] _{p,q} \\biggr) \\,d_{p,q}y. \\end{aligned} $$\\end{document} The modified Kantorovich (p, q)-Baskakov operators do not generalize the Kantorovich q-Baskakov operators. Thus, we introduce a new form of this operator. We also introduce the following useful conditions, that is, for any 0 leq b leq omega , such that omega in mathbb{N}, Psi _{omega} is a continuous derivative function, and 0< q< p leq 1, we have int _{mathbb{R}}x^{b}Psi _{omega}(x),d_{p,q}x = 0 . Also, for every Psi in L_{infty},there exists a finite constant γ such that gamma > 0 with the property Psi subset [ 0, gamma ] ,its first ω moment vanishes, that is, for 1 leq b leq omega , we have that int _{mathbb{R}}y^{b}Psi (y),d_{p,q}y = 0,and int _{mathbb{R}}Psi (y),d_{p,q}y = 1. Furthermore, we estimate the moments and norm of the new operators. And finally, we give an upper bound for the operator’s norm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call