Abstract

This paper considers the occurrence of explosive resonant triads in fluid mechanics. These are weakly nonlinear waves whose amplitudes become unbounded in finite time. Previous work is expanded to include interfacial flow systems with continuously varying basic velocities and densities. The first paper in this series [10] discussed the surprisingly strong singular nature of explosive triads. Many of the problems to be studied here will be found to have additional singularities, and the techniques for analyzing these difficulties will be developed. This will involve the concept of a critical layer in a fluid, a level at which a wave phase speed equals the unperturbed fluid velocity in the direction of propagation. Examples of such waves in this context are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call