Abstract

An adaptive model is developed here for the liquid water density fluctuations as momentary dense clusters with helices of hydrogen bonds and nondense tetrahedral clusters of ice. This model can be useful for explanation of liquid water structural anomalies including the high quantity of hydrogen bonds with quasitetrahedral orientation in the nonordered liquid water. The topology of such clusters is essentially differed from the one of the crystalline ice. From this and only this point of view, the liquid water can be considered as a two-structural fluid by dynamic forming the two topological kinds of clusters as a consequence of condensed-matter density fluctuations. Another feature of the dense-water-part clusters is helical ordering of protons which can realize coherent vibrations. A spectral series of such vibrations is determined as a function of the number of molecules into the helical cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.