Abstract
Anodized aluminum oxide (AAO) has been used as nanotemplates for nanomaterials and nanodevice fabrications. Microfabrication techniques are attracting attention for nanodevice synthesis. However, AAO requires a microfabrication-compatible substrate due to its brittleness. While there are studies that already show AAO on compatible substrates, the pore sizes may not be applicable for multicomponent nanodevices. In this study, wide pore AAOs with ohmic bottom contacts are fabricated on 76 mm Si wafers. Sputtering was used to deposit Al along with supporting layers to achieve this goal. A quiescent electropolishing technique was used to smooth the surface of Al. Standard photolithography was used to define the active area on the Al for anodization. Then 195 V two-step anodization was performed to fabricate wide pore AAOs with pore diameters ranging from 130 ± 32 nm to 400 ± 31 nm with interpore distance of 480 ± 47 nm. It also showed that the ordering of the pores depended on the current density over the more conventional anodization time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.