Abstract

A wafer-level and high-efficiency radio frequency (RF) testing of a photonic device is highly desired in the fabrication and characterization of large-scale photonic integration circuits. In this work, we propose on-wafer probing kit designs, and demonstrate a damage-free, self-calibrated RF characterization of an integrated silicon photonic transceiver with a heterodyne mixing approach. Reduced or even free of fiber coupling off chip operation can be achieved with the on-wafer probing-kit to extract the frequency responses of broadband modulators and photodetectors in the photonic integration transceiver, with no requirement of electro-optical or opto-electrical calibration. A proof-of-concept probing kit is designed and fabricated with an on-chip electroabsorption modulator (EAM) and photodetectors by heterogeneously integrated III-V material on silicon substrate. On-wafer RF measurements with the self-calibration method are experimentally demonstrated with an accuracy analysis compared with the conventional swept-frequency method. The on-wafer and full-electrical test nature of the probing kit significantly advances performance monitoring of photonic integration circuits during chip fabrication, and promisingly offers predictable outcome and yield analysis before packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.