Abstract

VT-harmonic maps generalize the standard harmonic maps, with respect to the structure of both domain and target. These can be manifolds with natural connections other than the Levi-Civita connection of Riemannian geometry, like Hermitian, affine or Weyl manifolds. The standard harmonic map semilinear elliptic system is augmented by a term coming from a vector field V on the domain and another term arising from a 2-tensor T on the target. In fact, this geometric structure then also includes other geometrically defined maps, for instance magnetic harmonic maps. In this paper, we treat VT-harmonic maps and their parabolic analogues with PDE tools. We establish a Jäger–Kaul type maximum principle for these maps. Using this maximum principle, we prove an existence theorem for the Dirichlet problem for VT-harmonic maps. As applications, we obtain results on Weyl/affine/Hermitian harmonic maps between Weyl/affine/Hermitian manifolds, as well as on magnetic harmonic maps from two-dimensional domains. We also derive gradient estimates and obtain existence results for such maps from noncompact complete manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.