Abstract
Under a certain normalization assumption we prove that the P1-spectrum BGL of Voevodsky which represents algebraic K-theory is unique over Spec.(Z). Following an idea of Voevodsky, we equip the P1-spectrum BGL with the structure of a commutative P1-ring spectrum in the motivic stable homotopy category. Furthermore, we prove that under a certain normalization assumption this ring structure is unique over Spec.(Z). For an arbitrary Noetherian scheme S of finite Krull dimension we pull this structure back to obtain a distinguished monoidal structure on BGL. This monoidal structure is relevant for our proof of the motivic Conner–Floyd theorem (Panin et al., Invent Math 175:435–451, 2008). It has also been used to obtain a motivic version of Snaith’s theorem (Gepner and Snaith, arXiv:0712.2817v1 [math.AG]).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.