Abstract

In this paper we are concerned with the initial boundary value problem for the micropolar fluid system in nonsmooth domains with mixed boundary conditions. The considered boundary conditions are of two types: Navier’s slip conditions on solid surfaces and Neumann-type boundary conditions on free surfaces. The Dirichlet boundary condition for the microrotation of the fluid is commonly used in practice. However, the well-posedness of problems with different types of boundary conditions for microrotation are completely unexplored. The present paper is devoted to the proof of the existence, regularity and uniqueness of the solution in distribution spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.