Abstract

The frequency and buckling equations of rectangular plates with various boundary conditions are developed within the third-order and the first-order shear deformation plate theories. The third-order theories account for a quadratic distribution of the transverse shear strains through the thickness of the plate. In the first part of this paper, Levinson's third-order theory, derived as a special case from Reddy's third-order theory, is used to study a plate laminated of transversely isotropic layers. The relationship between the original form of the governing equations and the interior and the edge-zone equations of the plate is closely examined and the physical insights from the latter equations are established. In the second part of the paper, the first-order shear deformation theory and the third-order theory of Reddy are studied for vibration and buckling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.