Abstract
Purpose Data crawling in e-commerce for market research often come with the risk of poor authenticity due to modification attacks. The purpose of this paper is to propose a novel data authentication model for such systems. Design/methodology/approach The data modification problem requires careful examinations in which the data are re-collected to verify their reliability by overlapping the two datasets. This approach is to use different anomaly detection techniques to determine which data are potential for frauds and to be re-collected. The paper also proposes a data selection model using their weights of importance in addition to anomaly detection. The target is to significantly reduce the amount of data in need of verification, but still guarantee that they achieve their high authenticity. Empirical experiments are conducted with real-world datasets to evaluate the efficiency of the proposed scheme. Findings The authors examine several techniques for detecting anomalies in the data of users and products, which give the accuracy of 80 per cent approximately. The integration with the weight selection model is also proved to be able to detect more than 80 per cent of the existing fraudulent ones while being careful not to accidentally include ones which are not, especially when the proportion of frauds is high. Originality/value With the rapid development of e-commerce fields, fraud detection on their data, as well as in Web crawling systems is new and necessary for research. This paper contributes a novel approach in crawling systems data authentication problem which has not been studied much.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.