Abstract

We recently have witnessed many ground-breaking results in machine learning and computer vision, generated by using deep convolutional neural networks (CNN). While the success mainly stems from the large volume of training data and the deep network architectures, the vector processing hardware (e.g. GPU) undisputedly plays a vital role in modern CNN implementations to support massive computation. Though much attention was paid in the extent literature to understand the algorithmic side of deep CNN, little research was dedicated to the vectorization for scaling up CNNs. In this paper, we studied the vectorization process of key building blocks in deep CNNs, in order to better understand and facilitate parallel implementation. Key steps in training and testing deep CNNs are abstracted as matrix and vector operators, upon which parallelism can be easily achieved. We developed and compared six implementations with various degrees of vectorization with which we illustrated the impact of vectorization on the speed of model training and testing. Besides, a unified CNN framework for both high-level and low-level vision tasks is provided, along with a vectorized Matlab implementation with state-of-the-art speed performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.