Abstract
In this paper, we establish some results which exhibit an application of convexificators in vector optimization problems (VOPs) and vector variational inequaities involving locally Lipschitz functions. We formulate vector variational inequalities of Stampacchia and Minty type in terms of convexificators and use these vector variational inequalities as a tool to find out necessary and sufficient conditions for a point to be a vector minimal point of the VOP. We also consider the corresponding weak versions of the vector variational inequalities and establish several results to find out weak vector minimal points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.