Abstract
We introduce variation of a vector δx which can be interpreted either as a virtual displacement of a system, or as variation of the velocity of a system, or as variation of the acceleration of a system. This vector is used to obtain a unified form of differential variational principles of mechanics from the scalar representative equations of motion. Conversely, this notation implies the original equations of motion, which enables one to consider the obtained scalar products as principles of mechanics. Using the same logical scheme, one constructs a differential principle on the basis of the vector equation of constrained motion of a mechanical system. In this form of notation, it is proposed to conserve the zero scalar products of reactions of ideal constraints and the vector δx. This enables one to obtain also the equations involving generalized constrained forces from this form of notation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.