Abstract

AbstractThe Johnson–Lindenstrauss lemma asserts that an n‐point set in any Euclidean space can be mapped to a Euclidean space of dimension k = O(ε‐2 log n) so that all distances are preserved up to a multiplicative factor between 1 − ε and 1 + ε. Known proofs obtain such a mapping as a linear map Rn → Rk with a suitable random matrix. We give a simple and self‐contained proof of a version of the Johnson–Lindenstrauss lemma that subsumes a basic versions by Indyk and Motwani and a version more suitable for efficient computations due to Achlioptas. (Another proof of this result, slightly different but in a similar spirit, was given independently by Indyk and Naor.) An even more general result was established by Klartag and Mendelson using considerably heavier machinery.Recently, Ailon and Chazelle showed, roughly speaking, that a good mapping can also be obtained by composing a suitable Fourier transform with a linear mapping that has a sparse random matrix M; a mapping of this form can be evaluated very fast. In their result, the nonzero entries of M are normally distributed. We show that the nonzero entries can be chosen as random ± 1, which further speeds up the computation. We also discuss the case of embeddings into Rk with the ℓ1 norm. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.