Abstract
This work focuses on the invertibility of non-constant shape Gaussian asymmetric interpolation matrix, which includes the cases of both variable and random shape parameters. We prove a sufficient condition for that these interpolation matrices are invertible almost surely for the choice of shape parameters. The proof is then extended to the case of anisotropic Gaussian kernels, which is subjected to independent componentwise scalings and rotations. As a corollary of our proof, we propose a parameter free random shape parameters strategy to completely eliminate the need of users’ inputs. By studying numerical accuracy in variable precision computations, we demonstrate that the asymmetric interpolation method is not a method with faster theoretical convergence. We show empirically in double precision, however, that these spatially varying strategies have the ability to outperform constant shape parameters in double precision computations. Various random distributions were numerically examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Mathematics and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.