Abstract
This paper is concerned with the geometric structure of the transmission eigenvalue problem associated with a general conductive transmission condition. We prove that under a mild regularity condition in terms of the Herglotz approximations of one of the pair of the transmission eigenfunctions, the eigenfunctions must be vanishing around a corner on the boundary. The Herglotz approximation is the Fourier extension of the transmission eigenfunction, and the growth rate of the density function can be used to characterize the regularity of the underlying wave function. The geometric structures derived in this paper include the related results in Diao et al. (Commun Partial Differ Equ 46(4):630–679, 2021) and Blåsten and Liu (J Funct Anal 273:3616–3632, 2017) as special cases and verify that the vanishing around corners is a generic local geometric property of the transmission eigenfunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.