Abstract

Let $x$ be a complex number which has a positive real part, and $w_1,\ldots,w_N$ be positive rational numbers. We show that $w^s \zeta_N (s, x \ |\ w_1,\ldots, w_N)$ can be expressed as a finite linear combination of the Hurwitz zeta functions over $\mathbf Q(x)$, where $\zeta_N (s,x \ |\ w_1,\ldots, w_N)$ is the Barnes zeta function and $w$ is a positive rational number explicitly determined by $w_1,\ldots, w_N$. Furthermore, we give generalizations of Kummer's formula on the gamma function and Koyama-Kurokawa's formulae on the multiple gamma functions, and an explicit formula for the values at non-positive integers for higher order derivatives of the Barnes zeta function in the case that $x$ is a positive rational number, involving the generalized Stieltjes constants and the values at positive integers of the Riemann zeta function. Our formulae also makes it possible to calculate an approximation in the case that $w_1, \ldots, w_N$ and $x$ are positive real numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.