Abstract

AbstractWe study the problem of maximizing terminal utility for an agent facing model uncertainty, in a frictionless discrete‐time market with one safe asset and finitely many risky assets. We show that an optimal investment strategy exists if the utility function, defined either on the positive real line or on the whole real line, is bounded from above. We further find that the boundedness assumption can be dropped, provided that we impose suitable integrability conditions, related to some strengthened form of no‐arbitrage. These results are obtained in an alternative framework for model uncertainty, where all possible dynamics of the stock prices are represented by a collection of stochastic processes on the same filtered probability space, rather than by a family of probability measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.