Abstract

The paper compares coefficient parameter estimation efficiency using penalized regression approaches. Five estimators are employed: Ridge Regression, LASSO regression, Elastic Net (ENET) Regression, Adaptive Lasso (ALASSO) regression, and Adaptive Elastic Net (AENET) regression methods. The study uses a multiple linear regression model to address multicollinearity issues. The comparison is based on average mean square errors (MSE) using simulated data with varying sizes, numbers of independent variables, and correlation coefficients. The results are expected to be useful and will be applied to real data to determine the best-performing estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.