Abstract

This paper focuses on the use of the theory of Reproducing Kernel Hilbert Spaces in the statistical analysis of replicated point processes. We show that spatial point processes can be observed as random variables in a Reproducing Kernel Hilbert Space and, as a result, methodological and theoretical results for statistical analysis in these spaces can be applied to them. In particular and by way of illustration, we show how we can use the proposed methodology to identify differences between several classes of replicated point patterns using the Box’s M and MANOVA tests, and to classify a new observation, using Discriminant Functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.