Abstract

SummaryAchieving a fair usage of network resources is of vital importance in Slice‐ready 5G network. The dilemma of which network slice to accept or to reject is very challenging for the Infrastructure Provider (InfProv). On one hand, InfProv aims to maximize the network resources usage by accepting as many network slices as possible; on the other hand, the network resources are limited, and the network slice requirements regarding Quality of Service (QoS) need to be fulfilled. In this paper, we devise three admission control mechanisms based on Reinforcement Learning, namely, Q‐Learning, Deep Q‐Learning, and Regret Matching, which allow deriving admission control decisions (policy) to be applied by InfProv to admit or reject network slice requests. We evaluated the three algorithms using computer simulation, showing results on each mechanism's performance in terms of maximizing the InfProv revenue and their ability to learn offline or online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.