Abstract

PROC MIXED has become a standard tool for analyzing repeated measures data. Its popularity results from a wide choice of correlated error models compared to other software, e.g. PROC GLM. However, PROC MIXED's versatility comes at a price. Users must take care. Problems may result from MIXED defaults. These include: questionable criteria for selecting correlated error models; starting values that may impede REML estimation of covariance components; and biased standard errors and test statistics. Problems may be induced by inadequate design. This paper is a survey of current knowledge about mixed model methods for repeated measures. Examples are presented using PROC MIXED to demonstrate these problems and ways to address them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.