Abstract

Abstract Classifying the land surface into climate types provides means of diagnosing relations between Earth’s physical and biological systems and the climate. Global climate classifications are also used to visualize climate change. Clustering climate datasets provides a natural approach to climate classification, but the rule-based Köppen–Geiger classification (KGC) is the one most widely used. Here, a comprehensive approach to the clustering-based classification of climates is presented. Local climate is defined as a multivariate time series of mean monthly climatic variables and the authors propose to use dynamic time warping (DTW) as a measure of dissimilarity between local climates. Also discussed are the choice of climatic variables, the importance of their proper normalization, and the advantage of using distance-based clustering algorithms. Using the WorldClim global climate dataset and different combinations of clustering parameters, 32 different clustering-based classifications are calculated. These classifications are compared between themselves and to the KGC using the information-theoretic V measure. It is found that the best classifications are obtained using three climate variables (temperature, precipitation, and temperature range), a data normalization that takes into account the skewed distribution of precipitation values, and the partitioning around medoids clustering algorithm. Two such classifications are compared in detail between each other and to the KGC. About half of the climate types found by clustering can be matched to the familiar KGC classes, but the rest differ in their climatic character and spatial distribution. Finally, it is demonstrated that clustering-based classification results in climate types that are internally more homogeneous and externally more distinct than climate types in the KGC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.