Abstract
It has been shown that code-division multiple-access (CDMA) systems that employ digital beamforming and base station antenna arrays have the potential to increase capacity significantly. Therefore, accurate performance prediction of such systems is important. We propose to take the electromagnetic behavior of the base station antenna array into account, as well as its impact on wireless channel propagation. Specifically, the wideband channel introduces scattering, while the mobile environment causes Doppler fading, which in turn degrades power controllability. We develop a more accurate performance analysis of antenna arrays, where the performance degradation in digital beamforming, due to the combination of mutual coupling, scatter and imperfect power control, and its impact on uplink CDMA system capacity is quantified. A Rayleigh fading amplitude with varying angle-of-arrival spread is assumed, and maximum signal-to-noise ratio beamforming weights are used. These weights are further correlated with mutual coupling at the base station array. Despite the degradation due to the combination of mutual coupling, scattering, and imperfect power control, significant capacity increases are possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.