Abstract

The authors develop an algorithm for adaptively estimating the noise subspace of a data matrix, as is required in signal processing applications employing the 'signal subspace' approach. The noise subspace is estimated using a rank-revealing QR factorization instead of the more expensive singular value or eigenvalue decompositions. Using incremental condition estimation to monitor the smallest singular values of triangular matrices, the authors can update the rank-revealing triangular factorization inexpensively when new rows are added and old rows are deleted. Experiments demonstrate that the new approach usually requires O(n/sup 2/) work to update an n*n matrix, and that it accurately tracks the noise subspace.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.