Abstract

We introduce the integral-pixel camera model, where measurements integrate over large and potentially overlapping parts of the visual field. This models a wide variety of novel camera designs, including omnidirectional cameras, compressive sensing cameras, and novel programmable-pixel imaging chips. We explore the relationship of integral-pixel measurements with image motion and find (a) that direct motion estimation using integral-pixels is possible and in some cases quite good, (b) standard compressive-sensing reconstructions are not good for estimating motion, and (c) when we design image reconstruction algorithms that explicitly reason about image motion, they outperform standard compressive-sensing video reconstruction. We show experimental results for a variety of simulated cases, and have preliminary results showing a prototype camera with integral-pixels whose design makes direct motion estimation possible. Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 On Unusual Pixel Shapes and Image Motion Nathan Jacobs, Stephen Schuh, Robert Pless Washington University St. Louis, MO, 63130 USA (jacobsn|schuhs|pless)@cse.wustl.edu

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.