Abstract
In the analysis of weak solutions relevant to evolutionary flows of incompressible fluids with non-constant viscosity or with non-linear constitutive equation, it is in general an open question whether a globally integrable pressure exists if the flows are subject to no-slip boundary conditions. Here we overcome this deficiency by considering threshold boundary conditions stating that the fluid adheres to the boundary until certain critical value for the wall shear stress is reached. Once the wall shear stress exceeds this critical value, the fluid slips. The main ingredient in our approach is to look at this type of activated, stick-slip, boundary condition as an implicit constitutive equation on the boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.