Abstract
We investigate mathematical properties of the system of nonlinear partial differential equations that describe, under certain simplifying assumptions, evolutionary processes in water-saturated granular materials. The unconsolidated solid matrix behaves as an ideal plastic material before the activation takes place and then it starts to flow as a Newtonian or a generalized Newtonian fluid. The plastic yield stress is non-constant and depends on the difference between the given lithostatic pressure and the pressure of the fluid in a pore space. We study unsteady three-dimensional flows in an impermeable container, subject to stick-slip boundary conditions. Under realistic assumptions on the data, we establish long-time and large-data existence theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.