Abstract

An experimental investigation on unsteady airfoil-vortex interaction has been done. The incident vortex, to interact with a downstream airfoil (NACA 0018, chord lengthc=20 mm), is generated by a square cylinder (side lengthD=20 mm). The square cylinder and airfoil are arranged in tandem and the spacing ratioL/D of the central distance to the side length is set a constant value of 4.625. The free stream Mach numbers are varied between 0.153 and 0.750, whereas the free stream Reynolds numbers (based on the side lengthD) are varied between 0.713×105 and 3.44×105. It is found that as the incident vortex approaches the airfoil, the circulation and scale are decreased until it arrives at a position near the leading edge of the airfoil. During this stage, some circulation of the incident vortex is transferred to the secondary vortex generated on the airfoil opposite to the surface that the incident vortex approaches. Thus, circulation and scale of the secondary vortex are increased. However, after the incident vortex goes further downstream, no circulation of the incident vortex is transferred to the secondary vortex effectively. As the result, both of the incident vortex and secondary vortex decay due to the viscous dissipation through the interaction with the boundary layer of the airfoil. The locus of the incident vortex is deviated in such a way that it goes away from the airfoil. The streamwise position of the secondary vortex is adjusted by the incident vortex, orvice versa, so as to meet each other just behind the trailing edge of the airfoil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.