Abstract
AbstractLet $n$ be an integer congruent to $0$ or $3$ modulo $4$ . Under the assumption of the ABC conjecture, we prove that, given any integer $m$ fulfilling only a certain coprimeness condition, there exist infinitely many imaginary quadratic fields having an everywhere unramified Galois extension of group $A_n \times C_m$ . The same result is obtained unconditionally in special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.