Abstract
We investigate universal algebra over the category Nom of nominal sets. Using the fact that Nom is a full reflective subcategory of a monadic category, we obtain an HSP-like theorem for algebras over nominal sets. We isolate a ‘uniform’ fragment of our equational logic, which corresponds to the nominal logics present in the literature. We give semantically invariant translations of theories for nominal algebra and NEL into ‘uniform’ theories, and systematically prove HSP theorems for models of these theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.