Abstract

Abstract Let A be a bounded, injective and self-adjoint linear operator on a complex separable Hilbert space. We prove that there is a pure isometry, V, so that AV > 0 and A is Hankel with respect to V, i.e. V * A = AV, if and only if A is not invertible. The isometry V can be chosen to be isomorphic to N ∈ ℕ ∪ {+∞} copies of the unilateral shift if A has spectral multiplicity at most N. We further show that the set of all isometries, V, so that A is Hankel with respect to V, are in bijection with the set of all closed, symmetric restrictions of A −1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.