Abstract
SynopsisValdivia (1978) introduced the class of suprabarrelled spaces, and (1979) deduced some uniform boundedness properties for scalar valued exhausting additive set functions on a σ-algebra from the suprabarrelledness of certain spaces. In this paper, it is shown that those uniform boundedness properties hold for G-valued exhausting additive set functions, G being a commutative topological group, on a larger class of Boolean algebras. Such properties are proved in Valdivia (1979) by means of duality theory arguments and ‘sliding hump’ methods, whereas here they are derived from the Baire category theorem. This generalization enables us to find a wide class of compact topological spaces K such that the subspaces of C(K) which satisfy a mild property are suprabarrelled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.