Abstract
We consider properties of quantum channels with the use of unified entropies. Extremal unravelings of quantum channel with respect to these entropies are examined. The concept of map entropy is extended in terms of the unified entropies. The map (q, s)-entropy is naturally defined as the unified (q, s)-entropy of a rescaled dynamical matrix of given quantum channel. Inequalities of Fannes type are obtained for introduced entropies in terms of both the trace and Frobenius norms of difference between corresponding dynamical matrices. Additivity properties of introduced map entropies are discussed. The known inequality of Lindblad with the entropy exchange is generalized to many of the unified entropies. For the tensor product of a pair of quantum channels, we derive a two-sided estimate on the output entropy of a maximally entangled input state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.