Abstract
A graph is called unicyclic if it owns only one cycle. A matching M is called uniquely restricted in a graph G if it is the unique perfect matching of the subgraph induced by the vertices that M saturates. Clearly, μ r (G) ≤ μ(G), where μ r (G) denotes the size of a maximum uniquely restricted matching, while μ(G) equals the matching number of G. In this paper we study unicyclic bipartite graphs enjoying μ r (G) = μ(G). In particular, we characterize unicyclic bipartite graphs having only uniquely restricted maximum matchings. Finally, we present some polynomial time algorithms recognizing unicyclic bipartite graphs with (only) uniquely restricted maximum matchings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.