Abstract

In discrete mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. Chemical graph theory is concerned with non-trivial applications of graph theory to the solution of molecular problems. Its main goal is to use numerical invariants to reduce the topological structure of a molecule to a single number that characterizes its properties. Topological indices are numerical invariants associated with the chemical constitution, for the purpose of the correlation of chemical structures with various physical properties, chemical reactivity, or biological activity. They have found important application in predicting the behavior of chemical substances. The Graovac–Ghorbani (ABCGG) index is a topological descriptor that has improved predictive potential compared to analogous descriptors. It is used to model both the boiling point and melting point of molecules and is applied in the pharmaceutical industry. In the recent years, the number of publications on its mathematical properties has increased. The aim of this work is to partially solve an open problem, namely to find the structure of unicyclic graphs that minimize the ABCGG index. We characterize unicyclic graphs with even girth that minimize the ABCGG index, while we also present partial results for odd girths. As an auxiliary result, we compare the ABCGG indices of paths and cycles with an odd number of vertices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.