Abstract

Abstract Top-down height tendency reasoning is explained and examined. This approach uses the assumption of a stratospheric level of insignificant dynamics (LID)—where height and pressure tendencies are considered negligible—to simplify the understanding of cyclone-scale hydrostatic height (pressure) tendency in the troposphere. Quasigeostrophic analytic model results confirm the existence of such a LID for scales less than approximately 5000 km. An examination of a height tendency equation with the LID assumption shows that there must be net integrated local warming (cooling) between the LID and any level below the LID where heights are falling (rising). The local temperature tendency, which from the thermodynamic equation results from advection, diabatic heating, and the product of vertical motion and static stability, reflects the combined actions of all thermodynamic and dynamic processes that together promote hydrostatic height change in isobaric coordinates. In particular, the important dynamic effe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.