Abstract

Hoeffding's U-statistics model combinatorial-type matrix parameters (appearing in CS theory) in a natural way. This paper proposes using these statistics for analyzing random compressed sensing matrices, in the non-asymptotic regime (relevant to practice). The aim is to address certain pessimisms of "worst-case" restricted isometry analyses, as observed by both Blanchard & Dossal, et. al. We show how U-statistics can obtain "average-case" analyses, by relating to statistical restricted isometry property (StRIP) type recovery guarantees. However unlike standard StRIP, random signal models are not required; the analysis here holds in the almost sure (probabilistic) sense. For Gaussian/bounded entry matrices, we show that both l1-minimization and LASSO essentially require on the order of k \cdot [\log((n-k)/u) + \sqrt{2(k/n) \log(n/k)}] measurements to respectively recover at least 1-5u fraction, and 1-4u fraction, of the signals. Noisy conditions are considered. Empirical evidence suggests our analysis to compare well to Donoho & Tanner's recent large deviation bounds for l0/l1-equivalence, in the regime of block lengths 1000-3000 with high undersampling (50-150 measurements); similar system sizes are found in recent CS implementation. In this work, it is assumed throughout that matrix columns are independently sampled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.