Abstract

Two-to-one ($2$-to-$1$) mappings over finite fields play an important role in symmetric cryptography. In particular they allow to design APN functions, bent functions and semi-bent functions. In this paper we provide a systematic study of two-to-one mappings that are defined over finite fields. We characterize such mappings by means of the Walsh transforms. We also present several constructions, including an AGW-like criterion, constructions with the form of $x^rh(x^{(q-1)/d})$, those from permutation polynomials, from linear translators and from APN functions. Then we present $2$-to-$1$ polynomial mappings in classical classes of polynomials: linearized polynomials and monomials, low degree polynomials, Dickson polynomials and Muller-Cohen-Matthews polynomials, etc. Lastly, we show applications of $2$-to-$1$ mappings over finite fields for constructions of bent Boolean and vectorial bent functions, semi-bent functions, planar functions and permutation polynomials. In all those respects, we shall review what is known and provide several new results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.