Abstract

Developing a previous idea of Faltings, we characterize the complete intersections of codimension 2 in P n , n ≥ 3, over an algebraically closed field of any characteristic, among l.c.i. X, as those that are subcanonical and scheme-theoretically defined by p ≤ n − 1 equations. Moreover, we give some other results assuming that the normal bundle of X extends to a numerically split bundle on P n and p ≤ n. Finally, using our characterization, we give a (partial) answer to a question posed recently by Franco, Kleiman and Lascu ([5]) on self-linking and complete intersections in positive characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.