Abstract

A model describing two-phase, incompressible, immiscible flow in fractured media is discussed. A fractured medium is regarded as a porous medium consisting of two superimposed continua, a continuous fracture system and a discontinuous system of medium-sized matrix blocks. Transport of fluids through the medium is primarily within the fracture system. No flow is allowed between blocks, and only matrix-fracture flow is possible. Matrix block system plays the role of a global source distributed over the entire medium. Two-phase flow in a fractured medium is strongly related to phase mobilities and capillary pressures. In this work, four relations for these functions are presented, and the existence of weak solutions under each relation will also be shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call