Abstract

This paper presents a comparison of two hypersingular time-domain boundary element methods for transient dynamic crack analysis in two-dimensional, homogeneous, anisotropic and linear elastic solids. Stationary cracks in infinite and finite elastic solids of general anisotropy under impact loading are investigated. A combination of the classical displacement boundary integral equations and the hypersingular traction boundary integral equations is applied. Two different numerical solution procedures are developed to solve the time-domain boundary integral equations. The spatial discretization is performed by a Galerkin-method in both solution procedures. A collocation method is adopted for the temporal discretization in the first solution procedure, while a convolution quadrature is implemented for the temporal discretization in the second procedure. An explicit time-stepping scheme is developed to compute the unknown boundary data and the crack-opening-displacements. Numerical examples for the dynamic stress intensity factors are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.