Abstract

We study two problems related to the existence of Hamilton cycles in random graphs. The first question relates to the number of edge disjoint Hamilton cycles that the random graph G n,p contains. δ(G)/2 is an upper bound and we show that if p ≤ (1 + o(1)) ln n/n then this upper bound is tight whp. The second question relates to how many edges can be adversarially removed from G n,p without destroying Hamiltonicity. We show that if p ≥ K ln n/n then there exists a constant α > 0 such that whp G − H is Hamiltonian for all choices of H as an n-vertex graph with maximum degree Δ(H) ≤ αK ln n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.