Abstract

The distributivity law for a fuzzy implication \(I\colon [0,1]^2 \to [0,1]\) with respect to a fuzzy disjunction \(S\colon [0,1]^2 \to [0,1]\) states that the functional equation \( I(x,S(y,z))=S(I(x,y),I(x,z)) \) is satisfied for all pairs \((x,y)\) from the unit square. To compare some results obtained while solving this equation in various classes of fuzzy implications, Wanda Niemyska has reduced the problem to the study of the following two functional equations: \( h(\min(xg(y),1)) = \min(h(x)+ h(xy),1)\), \(x \in (0,1)\), \(y \in (0,1]\), and \( h(xg(y)) = h(x)+ h(xy)\), \(x,y \in (0, \infty)\), in the class of increasing bijections \(h\colon [0,1] \to [0,1]\) with an increasing function \(g\colon (0,1] \to [1, \infty)\) and in the class of monotonic bijections \(h\colon (0, \infty) \to (0, \infty)\) with a function \(g\colon (0, \infty) \to (0, \infty)\), respectively. A description of solutions in more general classes of functions (including nonmeasurable ones) is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.