Abstract
Two autonomous, nonlinear, third-order ordinary differential equations whose dynamics can be represented by second-order nonlinear ordinary differential equations for the first-order derivative of the solution are studied analytically and numerically. The analytical study includes both the obtention of closed-form solutions and the use of an artificial parameter method that provides approximations to both the solution and the frequency of oscillations. It is shown that both the analytical solution and the accuracy of the artificial parameter method depend greatly on the sign of the nonlinearities and the initial value of the first-order derivative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.