Abstract
Abstract Non-symmetric and symmetric twisted block factorizations of block tridiagonal matrices are discussed. In contrast to non-blocked factorizations of this type, localized pivoting strategies can be integrated which improves numerical stability without causing any extra fill-in. Moreover, the application of such factorizations for approximating an eigenvector of a block tridiagonal matrix, given an approximation of the corresponding eigenvalue, is outlined. A heuristic strategy for determining a suitable starting vector for the underlying inverse iteration process is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.